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1. 

Although there is a vast number of papers in the vibration literature on the free vibrations
of Bernoulli–Euler beams subjected to various boundary conditions, there are not many
investigations (to the knowledge of the authors) on the eigencharacteristics of
Bernoulli–Euler beams, viscously damped by absolute dampers. In reference [1], an
approximate characteristic equation is set up for the free vibrations of Bernoulli–Euler
beams restrained by numerous torsional and linear springs, carrying point and heavy
masses and damped viscously by absolute dampers. The study in reference [2] is concerned
with the sensitivity analysis of the eigenvalues of a viscously damped clamped–free beam
where the analysis is also based on an approximate characteristic equation. The system
considered in reference [3] is more general than in the previous study due to the inclusion
of a tip mass. The present note is in some sense an extension of reference [3] because it
is aimed here to derive the ‘‘exact’’ characteristic equation of the mechanical system
investigated there.

2. 

The system to be dealt with in the present study is shown in Figure 1. It is the same
mechanical system as in reference [3]. The clamped–free beam carrying a tip mass M is
damped at x= hL by a viscous damper of constant c. Bending rigidity and mass per unit
length of the beam are EI and m, respectively. The partial differential equation of the free
bending vibrations of a uniform beam, according to Bernoulli–Euler theory is the well
known equation

EIwIV(x, t)+mẅ(x, t)=0, (1)

where w(x, t) represents the bending displacement of the beam at point x and t. The primes
and overdots denote partial derivatives with respect to x and t, respectively. The regions
to the left and right of the damper are denoted as w1 and w2 , where w1(x, t) and w2(x, t)
represent the bending displacements at the corresponding regions. The boundary and
matching conditions are

w1(0, t)=0, w'1 (0, t)=0, w1(hL, t)=w2(hL, t), w02 (L, t)=0,

w'1 (hL, t)=w'2 (hL, t), EIw12 (L, t)−Mẅ2(L, t)=0, w01 (hL, t)=w02 (hL, t),

EIw11 (hL, t)−EIw12 (hL, t)− cẇ1(hL, t)=0 (2)
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Figure 1. A viscously damped cantilever carrying a tip mass.

One assumes the solutions to be of the form

wj (x, t)=Wj (x) elt, (j=1, 2), (3)

where l denotes the unknown characteristic value of the system which is a complex number
in general. In the expression above, both wj (x, t) and Wj (x) represent complex valued
functions. The essential point here is to imagine the actual bending displacements wj (x, t)
as the real parts of some complex valued functions, for which the same notation is used
for the sake of briefness. By putting the expressions (3) into the partial differential equation
(1), the following ordinary differential equations for the functions Wj (x) are obtained

WIV
j (x)− b4Wj (x)=0, (j=1, 2), (4)

where

b4 =−ml2/EI (5)

is introduced.
The general solutions of the differential equations (4) are

W1(x)=C1 ebx +C2 e−bx +C3 eibx +C4 e−ibx,

W2(x)=C5 ebx +C6 e−bx +C7 eibx +C8 e−ibx (6)

where C1–C8 represent eight integration constants yet to be determined and i=z−1.
Substitution of the expressions in (6) into the boundary and matching conditions (2) yields
a set of linear, homogeneous equations consisting of eight equations for the determination
of these constants. A non-trivial solution of the set is possible only if the determinant of
the coefficients vanishes:
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where the following abbreviations have been introduced

b�= bL, bM =M/mL, b=−bMb�, d= c/mLv0, v2
0 =EI/mL4,

a=2id/b�. (9)

It is seen from the above that the parameters a and b are related to the effect of viscous
damping and the tip mass, respectively.

The determinantal equation (8) is in some sense the characteristic equation of the system
in Figure 1. The solution of this equation with respect to b� yields via

l=2iv0b�2 (10)

the unknown complex eigenvalues l of the mechanical system.
It is in order, for comparison of the numerical values in the next section, to give here

another expression for the approximate determination of the eigenvalues of the same
system, taken from reference [3]. There, in the context of the sensitivity analysis of the
system under investigation, the following 2n×2n matrix was introduced

A=$ 0
−M−1K

I
−M−1D% (11)

In addition to those given (9), the following abbreviations are defined:

l*= l/v0, a(1)= [a1(1), . . . , ak (1), . . . , an (1)]T,

ak (1)=cosh b�*k −cos b�*k − h̄k (sinh b�*k −sin b�*k ),

h̄k =(cosh b�*k +cos b�*k )/(sinh b�*k +sin b�*k )

b�*1 =1·875104, b�*2 =4·694091, b�*3 =7·854757, . . . ,

a(h)= [a1(h), . . . , ak (h), . . . , an (h)]T,

ak (h)= cosh b�*k h−cos b�*k h− h̄k (sinh b�*k h−sin b�*k h),

K= diag(b�*4
k h), I= n× n(identity matrix), M= I+ bMa(1)aT(1),

D= da(h)aT(h). (12)

The eigenvalues of the above matrix A yield good approximate values for the eigenvalues
of the mechanical system in Figure 1.

3.  

This section is devoted to the testing of the reliability of the analytical expressions
obtained. Firstly, the special case c=0, where damping is not present, will be considered.
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T 1

Effect of the variation of the tip mass ratio bM on the dimensionless frequency parameter b�.

bM

ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV
b� 0 0·20 0·40 0·60 0·80 1·00

b�1 1·87510407 1·61639966 1·47240849 1·37566854 1·30408675 1·24791741
b�2 4·69409113 4·26706157 4·14443036 4·08665324 4·05307815 4·03113944
b�3 7·85475744 7·31837267 7·21548589 7·17252465 7·14898484 7·13413224
b�4 10·99554073 10·40156263 10·31780693 10·28498044 10·26748665 10·25662107
b�5 14·13716839 13·50670225 13·43667566 13·41020846 13·39631447 13·38775633

The first five roots of the characteristic equation (8) obtained with the help of
MATHEMATICA are given in Table 1 with respect to the tip mass parameter bM . The
results shown are exactly the same as in reference [4]. For the damped system, the physical
data of the systems in [2, 3] are taken. E=7×1010 N/m2, I=(0·05×0·0053)/12 m4,
L=1 m, mL=0·675 kg, h=0·2, c=5 N/(m/s), bM =3. The last value means that the tip
mass is 3 times the beam mass.

The first five pairs of eigenvalues l of the system (arranged with respect to the magnitude
of the imaginary parts) are given in Table 2. The complex numbers in the first column
represent the ‘‘exact’’ eigenvalues l, which are obtained from the solution of equation (8)
with MATHEMATICA with respect to b� and then using (10). The complex numbers in
the second column are obtained from the eigenvalues l* of the matrix A in (11) and then
by multiplying them by v0. The eigenvalues l* are calculated with the help of MATLAB,
by taking n=20 in (11, 12). The comparison of the complex numbers in both columns
of Table 2 reveals that the eigenvalues of the matrix A yield quite good approximations
when compared to the ‘‘exact’’ eigenvalues of the mechanical system in Figure 1. The
magnitudes of both the real and imaginary parts of the approximate eigenvalues are
slightly greater than those of the ‘‘exact’’ eigenvalues, as expected.

It is quite instructive to report also on the experience gained during the solution of the
complex equation (8) with respect to b�. As seen from the definitions in (9), the parameter
a may have positive or negative signs. In case of the (+) sign, if some b�= a+ bi is a root
of equation (8) then −a−ib, b+ia and −b−ia are roots also. In case of (−) sign,
−a+ib, a−ib, b− ia and −b+ia also represent roots of the equation. However, all
of these roots yield one pair of complex conjugate number l1,2 which are physically
meaningful (i.e., negative real parts), when the same signs are selected in both (9) and (10).
Hence, it is sufficient to consider only the positive sign in the definitions of a and l.

T 2

Eigenvalues l of the system. First column: from the roots of the
characteristic equation (8), via (10); second column: eigenvalues of matrix

A multiplied by v0

from eq. (8) from matrix A

−3·660439 10−3 2 i 7·076019 −3·660459 10−3 2 i 7·076091
−0·7857802 i 115·536606 −0·7861442 i 115·54901
−4·2973682 i 369·632796 −4·3003722 i 369·77255
−8·0571462 i 768·481528 −8·0754552 i 769·09340
−7·3858132 i 1312·397925 −7·3786002 i 1314·2003
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4. 

The present study is concerned with the investigation of the eigencharacteristics of a
special system consisting of a viscously damped, clamped–free Bernoulli–Euler beam
carrying a tip mass. The exact characteristic equation is established via a boundary value
problem formulation. Numerical results obtained by solving this complex equation, are
given in the form of Tables which indicate the reliability of the derived analytical
expressions.
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